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Type of Plant Sensors
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Optical Sensors: Some Facts

SPAR

Measure optical properties of plants (transmittance, reflectance,
fluorescence)

The measurements of the optical sensors are closely related to the
actual amount of N in the crop, so they can provide a reliable estimate
of the state of N

Measures in contact with the leaf or a few centimeters (<2 m) from the
plant at regular time intervals or at critical times

LE
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Chlorophyll meters
N =f (Chlorophyll}
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Chlorophyll
absorbs red
radiation

Chlorophyll
transmits
near infra-red
(NIR)
radiation

Transmittance-based
chlorophyll meter

i

Fluorescence-bhased
chlorophyll meter

Ratio red to
far-red
chlorophyll
fluorescence
depends on
the
chlorophyll
content

Source: Padilla et al,, 2018




Transmittance-based chlorophyll meter
v’ SPAD-502 v Hydro N-Tester
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Fluorescence-based chlorophyll meter <o o=

Accurate measurement of chlorophyll

DUALEX® measures the chlorophyll content of leaf thanks to a transmittance ratio at
two different wavelengths. One in the far-red @ absorbed by chlorophyll and one in
the near-infrared @ as reference.

DUALEX® : O\ e (1] (5] (6]
light sources A ; A ) A A A
i . Polyphenols Epidermis
Flav Anth : absorption
LEAF |
] Mesaophyll
Chlorophyll
L fluorescence
DUALEX® : : E §. i [NBI 319
detection v : vis | [©  NR N l Cnl 457
200 300 400 500 600 700 800 900 nm

The only leafclip sensor to measure flavonols and anthocyanins
contents

DUALEX® measures flavonols and anthocyanins content of the leaves epidermis
thanks to a differential ratio of chlorophyll fluorescence.

Near-infrared chlorophyll fluorescence is Only a fraction of this light reaches
measured under a first reference excitation the chlorophyll in the mesophyll and

light not absorbed by polyphenols €. It is can generate near-infrared chlorophyll
compared to a second sampling specific fluorescence @. This principle of

light absorbed by polyphenols (e.g. green measurement is called the screening effect
© for anthocyanins or UV @ for flavonols).  of polyphenols on chlorophyll fluorescence.

Source: https://www.force-a.com/products/dualex



Fluorescence-based chlorophyll meter
pny SPARKLE
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NBI: Nitrogen Balance Index

Polyphenols, specifically flavonols, are indicators of nitrogen status. When a plant is under
optimal conditions, it favors its primary metabolism and synthesizes proteins (N-containing
molecules) containing chlorophyll, and few flavonols (carbon-based secondary compounds). In
case of nitrogen deficiency, the plant directs its metabolism towards an increased production of

flavonols

(1) Optimal conditions:
Photosynthesis

—— .\

crioophyl ()
: o

Flavonols

(2) Nitrogen deficiency:

Secondary metabolism

NBI= Chlorophyll / Flavonols
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Reflectance: Agronomics Status,
Bases of Optical Spectrum SPARKLE
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Reflectance patterns of crops SPARKLE

v’ Plant tissue normally absorbs approximately 90% of the visible radiation (390 to 750 nm) and reflects
approximately 50% of the NIR (750 to 1300 nm).

v The degree of absorbance and reflectance in the visible and NIR portions of the spectrum varies with crop N
content, thus, providing information on the crop N status

v" N-deficient crops, generally reflect more visible and reflect less NIR than N-sufficient crops

50~
Healthy plant
40 -
g Stressed plant
@ 30 —
v
| =4
S
| 2
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400 Visible 200 Near Infrared 1,000

Wavelenght (nm)

Figure 1. Typical reflectance spectrum of a healthy
Source: Padilla et al,, 2018 and a stressed plant.




Reflectance patterns of crops, water and §_€
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Optical Index: NDVI
Normalized Difference Vegetation Index SPARKLE
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Optical Indices

Most commonly used vegetation indices for monitoring crop N status

Index Acronym Equation Author
Normalized Difference Vegetation Index NDVI MR Red Sellers [88]
Green Normalized Difference Vegetation Index GNDVI lﬁig;% Ma et al. [90]
Red Ratio of Vegetation Index RVI T, Birth and McVey [91]
Green Ratio of Vegetation Index GVI e Birth and McVey [91]
Chlorophyll Index CI %ﬂ -1 Gitelson et al. [92]
Chlorophyll Vegetation Index CVI gf; * GRE‘i Vincini et al. [93]
NfR_Rreéd"",
Soil Adjusted Vegetation Index SAVI (bi—ed‘_ffjf) +L Huete [89]
Optimized Soil Adjusted Vegetation Index OSAVI e Rondeaux et al. [94]
Red Edge Normalized Difference Vegetation Index ~ RENDVI Nn—ed Fdge Gitelson and Merzlyak [95]
Canopy Chlorophyll Content Index CCcI el Barnes et al. [96]
Red Edge Index REI R—;.f’ﬁ'?—,,? Vogelmann et al. [97]
Ratio RENDVI/NDVI RENDVI/NDVI BRI Varco et al. [98]
MERIS Terrestrial Chlorophyll Index MTC] T Tk Dash and Curran [99]







SPARKLE Commercial devices

Table 1. Characteristics of some proximal optical sensors with potential for use for nitrogen (IN) management of vegetable crops.

Sensor Type Device Manufacturer Measuring Principle Wavelengths Used (nm) Scale
Chlorophyll meter SPAD-502 Konica Minolta (Tokyo, Japan) Transmittance 650, 940 Leaf
N-tester Yara International (Oslo, Norway) Transmittance 650, 960 Leaf
atLEAF+ FT Green LLC (Wilmington, DE, USA) Transmittance 660, 940 Leaf
MC-100 Chlorophyll Concentration Meter ~ Apogee Instruments Inc. (Logan, UT, USA) Transmittance 653, 931 Leaf
CCM-200 Chlorophyll Content Meter Plus Opti-Sciences Inc. (Hudson, NH, USA) Transmittance 653, 931 Leaf
DUALEX Force-A (Orsay, France) Transmittance 710, 850 Leaf
MULTIPLEX Force-A (Orsay, France) Fluorescence 516, 685, 735 Leaf
Reflectance sensor MSR5/87/16R CropScan Inc. (Rochester, MN, USA) Reflectance (passive 1) 460, 510, ggg’ 68!1([)]’ 660,710, Canopy
CropSpec Topc?{li‘l—::;l;f;ingz y[sjtsegl)s, Ine. Reflectance (passive) 730-740, 800-810 Canopy
Spectral Reflectance Sensor METER Group, Inc. (Pullman, WA, USA) Reflectance (passive) 532, 570, 650, 810 Canopy
OptRx Crop Sensor Ag Leader Technology (Ames, IA, USA) Reflectance (active ¥) 670,728,775 Canopy
N-sensor ALS Yara International (Oslo, Norway) Reflectance (active) 670, 730, 760 Canopy
Crop Circle AC5 430 Holland Scientific (Lincoln, NE, USA) Reflectance (active) 670, 730, 780 Canopy
Crop Circle AC5 470 Holland Scientific (Lincoln, NE, USA) Reflectance (active) 450, 550, 650, 670, 730, 760 Canopy
RapidScan CS-45 Holland Scientific (Lincoln, NE, USA) Reflectance (active) 670, 730, 780 Canopy
GreenSeeker Trimble Inc. (Sunnyvale, CA, USA) Reflectance (active) 650, 770 Canopy
GreenSeeker Handheld Trimble Inc. (Sunnyvale, CA, USA) Reflectance (active) 660, 780 Canopy
Flavonols meter DUALEX Force-A (Orsay, France) Fluorescence 375, 650 Leaf
MULTIPLEX Force-A (Orsay, France) Fluorescence 590, 735, 985 Leaf

* Trade or manufacturers’ names mentioned are for information only and do not constitute endorsement, recommendation, or exclusion. ¥ Active or passive refers to whether the sensor is
fitted or not with an own light source, respectively.



AUTOMATIC SPOT SPRAY SYSTEM
The system senses if a weed is present and
signals a spray nozzle to deliver a precise
amount of chemical — spraying only the
weed and not the bare ground

AUTOMATIC SPOT SPRAY SYSTEM
The system uses optical sensors to measure and quantify crop
health—or vigor, and address field variability by applying the right
amount of fertilizer, in the right place, at the right time.
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Water Stress Index (WSI): Canopy

Thermograph SPARKLE

A /orksvwE L

Proximal sensing

Tlea f — Twet Water stress  Optimum water Proximal sensing
CWSI = Td T n (stomata content
ry—1fwe closed) (stomata open)

41° 3'2387°N 3.84"
9°20'31.70"E 9'20'34.357E

\
Source: Dr. Willem Van Cotthem
Ghent Universit
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